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Hypothesis

Estimates of key hydrologic
variables derived from
remote sensing
observations can improve
water resources decision
and policy making.




An Increasingly Scarce Global Resource vasa

* Two thirds of the world’s
population live in areas that
experience water scarcity for at
least one month a year.
(Mekonnen and Hoekstra, 2016)

1.8 billion people are expected
to be living in regions with
absolute water scarcity by 2025.
(UNESCO, 2012)

By 2030 humanity’s “annual
global water requirements” will
exceed “current sustainable

water supplies” by 40%. (U.S.
Intelligence Community Assessment
of Global Water Security, 2012)




Leveraging “new” Information and Knowledge nasa

« Water management data often
exist in silos.

Global remote sensing
observations could benefit water
management.

However, RS estimates may be
under utilized for a number of
reasons including:
 Difficulties in integrating
disparate data sources
Lack of

knowledge/expertise/resources
to use new data sources

“Big data”




PROJECT TEAM: NASA Ames Research Center, USGS, USDA National Ag. Statistics Service,
California Dept. of Water Resources, NOAA, California State University Monterey Bay
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Application of RS in western United States:
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East Africa:

RHEAS Drought and Crop Yield
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East Africa:
RHEAS Drought and Crop Yield

Ethiopia

RHEAS Output
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Lower Mekong Basin:
Products (SPI and SRI): Nowcast — December 2016
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Lessons Learned and Best Practices

 Lessons Learned
— Sustainability of observations is a risk for water management.

— Big Data: Water managers don’t have the tools or the time to
handle the fire hose of data! Volume, Velocity, Variety

— Decision makers may have policy barriers in place that keep them
from using modern platforms.

« Best Practices
— Work with existing toolsets and data...don’t reinvent the wheel!

— Find a champion and build on that relationship to develop trust in
the community.

— Create cross-disciplinary teams with decision makers to co-
develop projects.

— Keep “surveying” the landscape to maintain understanding of the
state of the practice and to identify gaps and needs.




Summary

Hydrologic estimates derived from remote sensing have been
shown to be useful to support and improve water management.

« Airborne observations of snow water equivalent provide
estimates of snow properties at elevations that are out of reach
for existing sensing networks.

— These estimates are complementary to existing in situ
networks.

Homogeneous observations of land use provide large scale
monitoring for large-scale fallowing programs.

Global remote sensing estimates are used to inform hydrologic
and crop models in “data poor” regions — filling an important gap
for policy and decision making in the developing world.

Challenges exist, but they are not insurmountable.

Engagement with stakeholders and capacity building is critical for
effective application of scientific observations for decision support &




Questions?

Stephanie Granger

Stephanie.L.Granger@jpl.nasa.gov
(818) 354-5683
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